Drivetrains

1

Team 1732

Ernst Arnhold Wes Bassindale

Updated 8/2019

Agenda

- Overview
- Wheels
- Drivetrain types
- Drivetrain selection
- Frame types
- Gearboxes
- Motors + Electronics
- Driver stations
- CAD

Importance of a Drivetrain

- The **most** important part of a robot
- Move around the field
 - Can rarely score without a working drivetrain
 - At the very least, you can play defense
- Must be durable and reliable
- Can be optimized for speed, pushing force, and/or agility

Wheels

Wheel	Durability	Tread	Comment	
<i>Colson</i> Performa	High	Medium grip, reliable traction	Dead simple, almost indestructible	VexPro - Colson Performa
<i>Andymark</i> HiGrip	Medium	Several hardnesses available, soft grips better but wears faster	<i>Kit of Parts</i> wheel, cheap and reliable, can break spokes	
<i>WCP</i> Pneumatic Wheel	High	Medium/High	Expensive, can have long lead times	Andymark - HiGrip Westcoast Products - Pneumatic Wheel
<i>VexPro</i> Traction Wheel	Medium	Several treads and tires available. Treads are high maintenance to attach and fix.	Modular, adjustable	6

VexPro - Traction Wheel

Roller Wheels

- Omni
 - Rollers attached perpendicular to direction of rotation
 - Allow for sideways movement

- Mecanum
 - Rollers attached at 45 degree angle to axis of rotation
 - Allow for omni directional movement

Drivetrain Types

Types: Tank Drive

- Wheels on one side are tied together
 - "Skid steer", friction while turning
- Strengths
 - Can be the easiest to design and build
 - Potential for high pushing power and/or speed
 - Configurable
 - Center-drop to limit turning scrub
 - "Flat" with corner omnis to limit rocking and offer consistent turning
 - 2+2= Tractions and Omnis
 - Tank treads
- Weaknesses
 - Slightly less agile than other drivetrains

Types: Omni-directional

• H-Drive

- Allows strafing without losses
- Less powerful strafing
- More complex
- Holonomic / X Drive
 - 4 omni wheels at angles to corners
 - Lossy in all directions
 - Susceptible to defense

Holonomic / X - Drive

Types: Mecanum

- Wheel force vectors point at 45° angle
- Pros
 - Allows strafing, turning, full omni-directional motion
 - Fairly easy to design and build
- Cons
 - Wheels "fight" and create some losses
 - Low pushing force
 - Rollers make it susceptible to defense
 - Difficult to drive well
 - Wheels are expensive

Types: Swerve

- Uses a motor to drive and a motor to steer module
- Mechanically complicated
- Very difficult to design, build, and master
- Very difficult to program
- Very difficult to drive effectively
- The best maneuverability
- Expect to spend several years revising designs before seeing on-field payoff

High risk, high reward

Selecting your drivetrain

Pick Attributes

- Agility
 - Able to move and rotate
- Strength
 - Push robots, play and resist defense
- Speed
 - Traverse the field quickly
- Programming
 - Difficulty to write and tune code
- Ease of driving
 - Intuitive control
- Cross obstacles
 - Ability to overcome field terrain

- Design
 - Cost
 - Gearboxes, wheels, frame, etc
 - Ease to design
 - What are your capabilities?
 - Manufacturing
 - Can you build it in-house? Will sponsors make some parts? Lead times?
 - Assembly
 - Time taken, difficulty
 - Weight
 - Robot weight is capped, what do you want to spend on the drivetrain?
 - Repairing

Comparison table

- Score the different options
- Consider using a 1-5 or 1/3/9 system
- Weight the attributes based on important to the game, from your team strategy
- Fill in the white sections per your team's abilities

	Weight	Tank	Omni	Mecanum	Swerve
Agility	9	3 (27)	9 (81)	3 (27)	9 (81)
Strength	3	9 (27)	1 (3)	3 (9)	9 (27)
Speed	9	9 (81)	3 (27)	3 (27)	3 (27)
Prog	3	9 (27)	3 (9)	3 (9)	1 (3)
Drive	3	9 (27)	3 (9)	3 (9)	1 (3)
Terrain	1	9 (9)	3 (3)	1 (1)	3 (3)
Design	1	9 (9)	3 (3)	3 (3)	1 (1)
Sum		207	135	85	145

Frame types

Chassis Construction Overview

Sheets

FRC 3266- 2013 Offseason Robot

Tubes

FRC 314- 2011 Robot

Plates

FRC 1923 - 2017 Robot

Kitbot

- AndyMark AM14U
- Default drivetrain, comes in Kit of Parts (KoP)
- Configurable
 - Long/Square/Short
 - depends on robot mechanism needs, like a wide intake or a long drivetrain to make a tall robot less tippy
- Upgrade to 2 CIMs each side (4 total)

Versachassis System

- VexPro
- Very customizable
- Can be as simple or as complicated as you want
- Allows drivetrains in almost any configuration

Gearboxes

Gearboxes - COTS

- COTS (Commercial Off The Shelf)
 - VexPro
 - 2/3-CIM ballshifter
 - 2 CIM Single Speed Dingle Reduction
 - Single Speed Single Reduction (SSSR)
 - Andymark
 - Toughbox Mini (KoP)
 - EVO Slim
 - Options for Cim or 775 mounting pattern
 - West Coast Products
 - 3 CIM single speed

Gearboxes - Custom

- Allows full customization
 - Exact speed
 - \circ Shifting vs single speed
 - Form factor
 - Special features like a power-take-off (PTO)
 - Typically cheaper than COTS
- Unless you know exactly what you're doing and already have made these, don't do it during a build season. Try it in the off-season.
 - There are so many COTS options. Do you think you can do better than them?

Team 254 - 2013 Gearbox

Motors + Electronics

JVN Calculator

1-Speed Drivetra	in						
	Free Speed (RPM)	Stall Torque (N*m)	Stall Current (Amp)	Free Current (Amp)	Speed Loss Constant	Drivetrain Efficiency	
CIN	1 5310	2.43	133	2.7	81%	90%	
# Gearboxes in Drivetrain	# Motors per Gearbox		Total Weight (lbs)	Weight on Driven Wheels	Wheel Dia. (in)	Wheel Coeff	
2	2		154	100%	4	1.3	
Driving Gear	Driven Gear		Drivetrain Free-Speed	Drivetrain Adjusted Speed	Pushing Match Current per Motor		
12	40		6.63 ft/s	5.37 ft/s	50.94 Amps		
14	40		13.97 : 1	< Overall G	ear Ratio		
15	22						
1	1						

- Calculate motor needs
- Compare gearing options
- Useful for drivetrains, and any motor mechanism

Motor Characteristics

Motor	Free Speed (RPM)	Max Power (W)	Stall Torque (N∙m)	Stall Current (A)	Weight (Ib)	
NEO brushless	5676	406	2.60	105	0.94	
CIM brushed	5330	337	2.41	131	2.80	
Mini CIM	5840	215	1.41	89	2.16	
775Pro	18730 s.vex.com and revrobotics.co	347	0.71	134	0.80	25

Motor Trade-offs

- CIM / MiniCIM drivetrains are tried and true
 - 4 or 6 motor configurations of each are very good drivetrains
 - Dead simple, hard to break
 - Sealed motors deal well with heat dissipation

- 775Pro drivetrains have high risk but possible rewards
 - 6 or 8 motor
 - Light weight
 - Risk of burning out motors without current limiting/ramping
 - If you don't already know how to do it and what to do, don't. Use CIMs.

- NEO drivetrains
 - 4 or 6 motor
 - Lightest weight
 - Highest power density
 - Limited testing time (introduced in 2019 season)
 - Seem like THE way to go for drivetrains, moving forward

Drivetrain Electronics - Components

- Critical Components
 - Motors
 - Motor Controllers
 - Power Distribution Panel (PDP)
 - RoboRio
- Auxiliary Components
 - 120 Amp Main Breaker
 - Robot Battery
 - OpenMesh Radio

Motor Controllers

- Drivetrain motor controllers connect to 40A slots on the Power Distribution Panel
- Communication Options
 - CAN
 - Daisy-chained network, simplifies wiring but creates single point of failure
 - PWM
 - Single cables to each controller, requires many wires (usually a mess)
- Spark MAX required for NEO brushless motors

	Name	Comms	Feedback	Cost			
	Spark	PWM	Forward/ Reverse Limit Switch	\$40			
	Victor SPX	PWM/CAN	None	\$50			
	Talon SRX	PWM/CAN	F/R Limit Switch Encoders Potentiometer	\$90			
	Spark MAX	PWM/CAN /USB	F/R Limit Switch Encoders Potentiometer	\$75			

Power Distribution Panel

- Power Distribution Panel <u>AM-2856</u>
 - Connects battery power and *distributes* it to other systems on the robot
 - Motor controllers should be connected to the 40A slots
 - Smaller motors connect to the 30A slots
- PDP can support connecting 15 devices, but only a maximum of 6 CIM Motors
 - Teams need to be mindful of the amount of current the total number of motors will draw to avoid brownouts

Examples - Wiring Best Practices

https://www.chiefdelphi.com/forums/showthread.php?p=1440512

https://www.chiefdelphi.com/forums/showpost.php?p=1444876&postcount=11

Driver Stations

Driver Stations

- Simple & intuitive
 - Don't confuse your drivers!
- Traditional driver stations have two positions: Driver & Operator
 - Allow driver to focus on driving and minimal functions
- Inputs depend on personal preference
- Easy to transport
 - Small stations can fit in a briefcase
 - Large stations can have a shelf on the robot cart, or wheels
- Reconfigurable
 - Allow the driver to move for a better field view

Driver Station - Control Types

- Joysticks
 - Tank drive maps well to joysticks
 - Allows fine control over turning and positioning, but worse control for driving straight at varying speeds
 - Joystick buttons can map to robot functions
- Gamepad
 - Allow for mapping several functions to one controller
 - Mappings can easily change to match personal preference
 - Very familiar, but possibly less intuitive and less fine control
- Arcade buttons
 - Specific mapping of a control to a single button
 - Typically a custom button panel, takes time, know-how
 - More user friendly for quick learning and customized layouts

Questions?

Email: Team@team1732.com