Pneumatics

Team 1732

Ernst Arnhold Owen Ledger

Agenda

- Intro
- FRC System Overview
- Components
- Example Mechanisms
- System Design Tips

Under Pressure

- Pressure is [force] per [area]
 - Typically pounds per square inch, PSI
- A pneumatic system uses pressurized air to produce and transmit mechanical energy

Pneumatics Advantages

- Simple to design
 - Compared to designing a mechanism with a motor, gearing, chains, belts, etc.
 - Just bolt a pneumatic cylinder onto two things
- Adjustable force
- Strong
 - Get hundreds of pounds of force
- Easy to add later
 - Adding a mechanism with pneumatics is easier than with motors

FRC System Overview

FRC System Overview

FRC System Overview

Air Compressor

- Converts electric motor rotation into pressurized air
- Pictured is a single-stage reciprocating compressor, which is common in FRC

FRC Compressors

- Viair 90c
 - Lower weight, pretty good
- Put a fan on it
 - Prevents your tubes from melting

A ROBOT'S compressor may be substituted by another compressor, but a ROBOT may only have one designated compressor at a time, and all compressed air on the ROBOT must be sourced from a single compressor.

Note: Viair C-series compressors, which have a max working pressure of 120 PSI, are rated for intermittent pressures greater than 125 PSI and therefore meet the requirements of R75.

Pipe Thread

- Used on many fittings
 - Threads vary on components, so check that you have the right fittings
 - o 10-32 is also common
 - Small fittings, especially in brass, are prone to breaking
- National Pipe Taper (NPT) sizing isn't immediately

obvious, so double check before buying!

- Tapered fittings form a tight seal
- Use with teflon tape or thread sealer

FRC Fittings

- Minimize number of connections to reduce points of failure
- Stock up on standard sizes
 - Recommended 1/4" and 5/32" tubing
 - Recommended 1/4" NPT and 10-32 threads

McMaster - 5779K167

Air tanks

- Just use the Clippard ones from Andymark
 - They can have problems with their built-in tube connections, but other than that are pretty good and light
 - You can use properly rated large metal air tanks, but expect to have a problematic robot inspection process at competitions

Tubing

- Tubing size limit is 1/4" OD
 - To maximize flow to compressor, air tanks, solenoids, large-bore cylinders
- Smaller tubing, 5/32" OD
 - Easier to route
 - Smaller
 - Tighter bend radius
 - Lighter
 - Meets most flow needs for smaller cylinders
 - Has roughly 1/3 of the inner cross sectional area of 1/4" OD tubing
 - Automation Direct sells reducers

Pressure Switch

- Pressure overcomes a spring force to close contacts
 - This completes a circuit, sending a signal back to the controller, which turns off the compressor
- FRC uses Nason SM-2B-115R/443
 - Sold by Andymark
 - o Preset to 115-120 PSI

Check Valve

- One-direction valve, that allows free flow only in one direction
- Pressure coming from the bottom overcomes the spring and pushes the ball out of the way, allowing flow
- Pressure coming from the top pushes the ball down, preventing flow

Pressure Relief Valve

- An adjustable check valve
- Twist the cap to adjust the spring compression to set the force for the source pressure to overcome

FRC Pressure Relief Valves

- Adjustable valves
 - o Norgren 16-004-011, 16-004-003
- Preset valves
 - o McMaster 5784T12, 125 PSI
 - Some of these open and stay open, so check extensively before using them at a competition. Also, make sure you buy a 125 PSI, not 120.
- Other equivalent adjustable and preset valves are legal

Pressure Regulators

- Pressure entering the body increases and pushes the diaphragm up, which closes the poppet
- Adjusting the handle changes the spring compression, changing the force that the pressure has to overcome to raise and lower the poppet
- This gives you a mechanism to set a fixed output pressure for a range of input pressures

FRC Gauges and Regulators

- Norgren regulator and gauge are common
 - Sold via Andymark
 - Nothing wrong with them, but they aren't the best
- Mini components
 - Save weight and space
 - AutomationDirect
 - Andymark

Solenoid Valve

- Energizing a solenoid coil moves a plunger to open a valve
- Single acting solenoid valve
 - A single solenoid coil pushes the valve in one direction, a spring returns it
 - Has a default position because of the spring
- Double acting solenoid valve
 - Has 2 solenoid coils, one to open and one to close the valve
 - Has no default position

FRC Solenoid Valves

- SMC Solenoids and manifolds
 - Via VexPro
 - Compact
 - Simplifies input plumbing
 - Single point of entry
 - Lower possible flow per valve, because of single entry
 - Plug extra holes
 - Via Automation Direct

Pneumatic Cylinders

- The whole assembly is a "pneumatic cylinder"
 - Just that one part is a "piston". Don't call the whole thing a piston.
- Force:
 - Surface area of the back of the piston X pressure
 - 1" bore cylinder @ 60 psi
 - 0.79 in^2 x 60 pounds/inch^2 = 47.4 lbs
 - Pulling force is slightly lower because of the piston rod taking up area on the piston

Single Acting Cylinder

- The previous slide shows a "double acting" cylinder, which both pushes and pulls with air
- A single acting cylinder uses air to either push (extend) or pull (retract)
 - In some applications where force is only needed in one direction, using a single acting cylinder will save air
 - Single acting cylinders are typically longer for the same stroke length

FRC Pneumatic Cylinders

McMaster

 Many options, typically expensive

Bimba

Cheaper than McMaster

AutomationDirect

 I mean, if you're already buying fittings and gauges there...

Flow Control Valve

- Uses a screw to adjust how open a connection is
 - Like kinking a hose
 - Lets you slow down air flow by a controllable amount, without reducing pressure
- Can have a check valve, so flow is only reduced in one direction, but free in the other

FRC Flow Control Valves

- Slow down pneumatic cylinder actuation
 - o Make moving a mechanism less violent
- Can be attached directly to a cylinder, or in-line on tubing

Pneumatic Controls

- Powered by Power Distribution Panel/Hub
- Communicates over CAN
- Powers air compressor
- Gets pressure switch signal
- Powers solenoid valves
- Important to set jumper for 12 or 24V solenoids
- Pneumatic Control Module
 - o Sold by CTR Electronics, Andymark, Vexpro
- Pneumatic Hub (New)
 - Sold by Rev

Pneumatic Mechanisms

Linear Motion

- Much easier to implement than a rack and pinion
- Sliders can be finicky, but try drawer sliders or linear bearings on smooth rods
- Examples:
 - o 2012 hood extension
 - 2019 hatch panel grabber extension
 - o 2013 pull-up climbers

Short Rotation

 For mechanisms with 2 positions, consider pneumatics instead of motors

- Examples
 - o 2011 Tube claw
 - o 2017 Gear intake
 - o 2019 Ball intake

Constant Force

- Gear shifter
 - Losing pressure can cause a "neutral" position between gears
- Brake
 - What's the default position? What happens if you lose pressure?

Cylinder Tips

- Don't bend the rod
 - o It'll mess up the shaft seal
 - Forces should follow a direct line down the middle
 - Provide load support with smooth rods + linear bearings, drawer sliders, "elevator kits"
- Use the jam nut
 - Otherwise your spacing will change over time
- Don't break the seal
 - If you use vice grips on the piston rod I'll cry

Managing Capacity

- The small compressor won't do much during the match. Plan for enough capacity and fill the tanks ahead of time.
- How often will a function happen during a match?
 - o If the answer is [a huge number], pneumatics might not be the right solution
 - Run a "match+" of cycling all of your pneumatics to test your capacity
- Periodically check the system for leaks
 - Pressurize the robot and let it sit for several minutes. Check if the pressure dropped.
 - Check both positions of each function!

Troubleshooting Leaks

- If you can't hear or feel a small leak, try using water with a bit of soap and watch for bubbles
- Work through different parts of the system and isolate them from others
 - For example, cap the output of an air tank and check that just the compressor+tanks hold air. Then add in just the plugged manifold. Then one circuit at a time.
- Common causes of leaks:
 - Badly done teflon tape
 - A tube that isn't seated correctly
 - Get and use a tube cutter for square cuts

Get Free Stuff!

- Kit of Parts vouchers
 - Clippard air tanks
 - o Bimba cylinders
 - Automation Direct fittings
 - Andymark everything

Questions?

Email: Team@team1732.com